
Specifications

Compatible with 0.021" MC

REF	A:	B:	C:	D:	E:	Microcatheter	Min. Vessel
	Shaft Diameter	Shaft Length	Insertion wire	System Length	Working Length	Compatibilty	Diameter
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
PRELAX-4-20	4	29	1800	1260	20	ID 0.021"	2.5

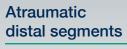
Manufactured by:

femtos

femtos GmbH Universitätsstraße 136 D-44799 Bochum Germany www.femtos.de Tel. +49 234 970 50 320 Fax +49 234 970 50 327 Distributed by:

phenox

phenox GmbH Lise-Meitner-Allee 31 D-44801 Bochum Germany www.phenox.net Tel. +49 234 36 919 0 Fax +49 234 36 919 19 Perfected stent technology for the angioplasty of cerebral vasospasms.


pRELAX, the first of its kind!

phenox

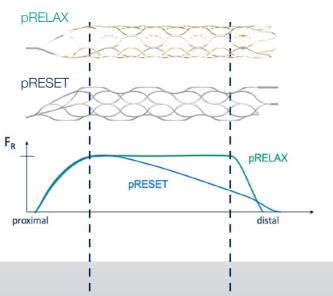
PRELAXVasospasm Treatment Device

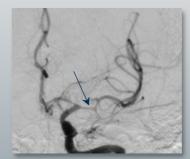
Platinum rivets

True visibility with NAC Technology

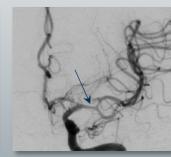
Key features

- Atraumatic distal segments ensure multiple, safe device placements
- True visibility with NAC Technology
 (Noble Alloy Coating) for precise positioning and controlled vessel interaction
- Two distal platinum rivets and the proximal marker identify the working length associated with maximum radial force
- Consistently high radial force across full working length offers effective and permanent vessel alteration


Consistently high radial force across full working length


Indication driven radial force profile

Consistently high radial force across full working length


"Dilatation of vascular smooth muscle cells beyond a threshold of mechanical failure is sufficient to resolve cerebral vasospasm without damage to the underlying extracellular matrix."

Acc. to Bhogal P. et al.1

Post